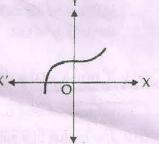
# FIRST TERMINAL EXAMINATION (CLASS-X)

7/2017

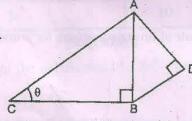
SUBJECT: MATHEMATICS (SET-A)

Time: 3 Hrs.

M.M.: 80


### General Instructions:

- 1. All questions are compulsory.
- 2. The question paper consists of 30 questions divided into four sections A, B, C and D. Section-A comprises of 6 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 8 questions of 4 marks each.
- 3. There is no overall choice.
- 4. Use of calculator is not permitted.


### SECTION-A

- Q1. The graph of y = p(x) is given for a polynomial p(x). Find the number of zeroes of p(x).
- Q2. Check whether the following pair of linear X equations is consistent or not:

$$2x + 3y = 6$$
$$4x + 6y = 12$$



- Q3. For a given data, the 'less than ogive' and the 'more than ogive' intersect at (15, 40). Find the median of the data.
- Q4. In the given figure, AD = 4cm, BD = 3cm and CB = 12cm. Find the value of  $\cot\theta$ .



- Q5. Three cubes each of side 1cm are joined end to end. Find the volume of the resulting cuboid.
- Q6. AABC and  $\triangle PQR$  are similar triangles such that  $\angle A = 32^{\circ}$  and  $\angle R = 65^{\circ}$ . Find the measure of  $\angle B$ .

### SECTION-B


- Q7. Find a quadratic polynomial, sum of whose zeroes is 8 and their product is 12. Hence, find the zeroes of the polynomial.
- Q8. Find the mode for the following data:

| Class Interval | 0-20 | 20-40 | 40-60 | 60-80 |
|----------------|------|-------|-------|-------|
| Frequency      | 35   | 315   | 120   | 50    |

Q9. In the adjoining figure,  $\frac{QR}{QS} = \frac{QT}{PR}$  and

∠PQR = ∠PRQ. Prove that ΔPQS ~ ΔTQR.

Q10. The areas of two similar triangles ABC and PQR are in the ratio 9:16. If BC = 4.5cm, find the length of QR.



- Q11. If  $tan(A + B) = \sqrt{3}$  and  $tan(A B) = \frac{1}{\sqrt{3}}$ ,  $0^{\circ} < A + B \le 90^{\circ}$ , A > B, find the values of A and B.
- Q12. The radius of a sphere is 9cm. It is melted and drawn into a wire of diameter 2cm. Find the length of the wire.

# SECTION-C

- Q13. From a solid cylinder of height 30cm and radius 7cm, a conical cavity of height 24cm and of base radius 7cm is drilled out. Find the volume of the remaining solid.
- Q14. Solve the following pair of linear equations for x and y:

$$\frac{5}{x-1} + \frac{1}{y-2} = 2$$

$$\frac{6}{x-1} - \frac{3}{y-2} = 1, x \neq 1, y \neq 2$$

Q15. A part of monthly hostel charges is fixed and the remaining depends on the number of days one has taken food in the mess. When a student A takes food for 20 days, he has to pay ₹ 1,000 as hostel charges whereas a student B, who

takes food for 26 days pays  $\ref{1,180}$  as hostel charges. Find the fixed charge and the cost of food per day.

- Q16. Find the zeroes of the quadratic polynomial  $4x^2 3 4x$ . Verify the relationship between the zeroes and the coefficients of the polynomial.
- Q17. Find the value of Cosec30° geometrically.
- Q18. Without using trigonometric tables, evaluate:

$$\frac{2\sin 68^{\circ}}{\cos 22^{\circ}} - \frac{2\cot 15^{\circ}}{5\tan 75^{\circ}} - \frac{3\tan 45^{\circ} \ \tan 20^{\circ} \ \tan 40^{\circ} \ \tan 50^{\circ} \ \tan 70^{\circ}}{5}$$

Q19. In the given figure, PQ || CD and PR || CB.

Prove that 
$$\frac{AQ}{QD} = \frac{AR}{RB}$$



Q20. Solve by the method of cross multiplication:

$$5x - 6y = -9$$

$$3x + 4y = 25$$

Q21. The arithmetic mean of the following distribution is 53. Find the value of p.

| Class Interval | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 |
|----------------|------|-------|-------|-------|--------|
| Frequency      | 12   | 15    | 32    | p     | 13     |

Q22. Change the following frequency distribution to more than type distribution and draw its ogive. Using the graph, find its median.

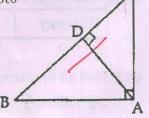
| Classes   | 0-5 | 5-10 | 10-15 | 15-20 | 20-25 |
|-----------|-----|------|-------|-------|-------|
| Frequency | 6   | 8    | 10    | 6     | 4,-   |

#### SECTION-D

- Q23. Find all the zeroes of the polynomial  $x^4 3x^3 + 6x 4$ , if two of its zeroes are  $\sqrt{2}$  and  $-\sqrt{2}$ .
- $\ensuremath{\mathsf{Q}} 24.$  Solve graphically the pair of linear equations :

$$x - y + 1 = 0$$

$$3x + 2y - 12 = 0$$


Shade the region bounded by these lines and the *x*-axis.

- Q25. A bucket made up of metal sheet is in the form of a frustum of a cone. Its depth is 24cm and the diameters of the top and the bottom are 30cm and 10cm respectively. Find the cost of the metal sheet used, if it costs  $\stackrel{?}{\underset{?}{|}}$  10 per 100cm² (Use  $\pi$  = 3.14).
- Q26. A toy is in the form of a cone mounted on a hemisphere of common base radius 7cm. The total height of the toy is 31cm. Find the total surface area of the toy.
- Q27. Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
- Q28. Find the mean and median of the following data:

| Class Interval | Frequency |  |
|----------------|-----------|--|
| 0-50           | 2         |  |
| 50-100         | 3         |  |
| 100-150        | 5         |  |
| 150-200        | 6         |  |
| 200-250        | 5 5       |  |
| 250-300        | 3         |  |
| 300-350        |           |  |

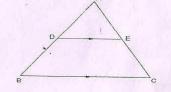
Q29. Prove that : 
$$(\csc\theta - \sin\theta) (\sec\theta - \cos\theta) = \frac{1}{\tan\theta + \cot\theta}$$

- Q30. (a) In the given figure,  $\angle BAC = 90^{\circ}$  and  $AD \perp BC$ . Prove that  $AB^2 + CD^2 = BD^2 + AC^2$ .
  - (b) Sahil saw a triangular banner on 'Yoga Day'. Give one importance of yoga and exercises in our daily life.



#### FOLLOWING QUESTIONS ARE TO BE CHANGED WITH Q6, Q9, Q10, Q30. (SET A)

orrection in Q6, Q9, Q10, Q30. (SET A)


Diksha 8201109

Q6. In the given figure, AD= 2.1 cm, BD=4.2 cm , AE=2.3 cm and CE=4.6 cm. Prove that DE II BC.

Q9. Divide the polynomial  $f(x) = 6x^3 + 13x^2 + x - 2$  by g(x) = 2x + 1 and find quotient and remainder.

Q10. Prove that  $\sin^2 A + \cos^2 A = 1$ .

Q30. (a)The diagonals of a quadrilateral ABCD intersect each other at the point O such that  $\frac{AO}{BO} = \frac{GO}{DO}$ . Show that ABCD is a trapezium.



(b) Sahil saw a triangular banner on 'Yoga Day'. Give one importance of yoga and exercises in our daily life.